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Abstract
Inflammation is a natural reaction of the innate immune system that evolved primarily to protect the human body from 
invading pathogens and to heal injuries. There are two different types of inflammation, acute and chronic inflammation, 
differing in duration, underlying causes, and characteristics. The acute-to-chronic transition can be determined by several 
pathomechanisms, including dysregulation of immune response and failure to eliminate the underlying cause. Emerging ev-
idence suggests that dysfunctional mitochondria can promote the development of chronic inflammation. In this respect, the 
mechanisms triggering defective mitophagy, a selective form of autophagy that exterminates dysfunctional mitochondria to 
maintain cellular homeostasis, attracted special attention. This review aims to summarize current evidence underlining the 
role and mechanisms of mitochondria in inflammation chronification, which will contribute to develop targeted therapeutic 
approaches to restore mitochondrial health and alleviate chronic inflammation that can be used for a wide range of chronic 
inflammatory diseases.

Keywords: Chronification of inflammation; Defective mitophagy; Dysfunctional mi-
tochondria; Resolution of inflammation; Mitochondrial genome editing; Mutations 
in mtDNA.
Abbreviations: ATP, adenosine triphosphate; BNIP3, BCL-2/adenovirus E1B 19 kDa 
protein-interacting protein 3; cGAS, GMP-AMP synthase; COPD, chronic obstructive 
pulmonary disease; CRISPR-Cas9, clustered regularly interspaced short palindromic re-
peats; CVD, cardiovascular disease; Drp1, dynamin-1-like protein; FIS1, mitochondrial 
fission 1 protein; FUNDC1, FUN14 domain-containing 1; IBD, inflammatory bowel 
disease; IL, interleukin; LC3, an autophagosome marker; LDL, low-density lipoprotein; 
MMP, mitochondrial membrane potential; Mff, mitochondrial fission factor; Mfn1/2, 
mitofusin-1/2; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen 
species; MTS, mitochondrial targeting sequence; NF-κB, nuclear factor-kappa B; 
NIX, BH3-only family signaling protein; NLRP3, NACHT, LRR, and PYD domains-
containing protein 3; Nrf 1/2, nuclear respiratory factors 1/2; OPA1, dynamin-like 120 
kDa protein; PARKIN, 465-amino acid residue E3 ubiquitin ligase; PGC1α, peroxisome 
proliferator-activated receptor alpha; PINK1, tensin homolog-induced putative kinase 
1; ROS, reactive oxygen species; sgRNA, single guide RNA; SLE, systemic lupus ery-
thematosus; STING, stimulator of interferon genes; TC-HSMAM1, Thp1 Cybrid-High 
Sum Mutation Antiatherogenic Mutation 1; Tfam, mitochondrial transcription factor A; 
TNF-α, tumor necrosis factor-alpha; T2DM, type 2 diabetes mellitus.
*Correspondence to: Volha I. Summerhill and Alexander N Orekhov, Institute for 
Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia. 
ORCID: https://orcid.org/0000-0002-5430-9922 (VIS); https://orcid.org/0000-0002-
6495-1628 (ANO). Tel: +7 903 169 08 66 (ANO), +7 903 169 08 66 (VIS), E-mails: 
volhasummer@gmail.com (VIS); alexandernikolaevichorekhov@gmail.com (ANO)
How to cite this article: Orekhov AN, Summerhill VI, Khotina VA, Popov MA, 
Uzokov JK, Sukhorukov VN. Role of Mitochondria in the Chronification of Inflam-
mation: Focus on Dysfunctional Mitophagy and Mitochondrial DNA Mutations. Gene 
Expr 2023;22(4):329–344. doi: 10.14218/GE.2023.00061.

Introduction
Inflammation is a vital immune response that helps the body com-
bat infections and heal injuries. Nevertheless, in certain cases, in-
flammation can become chronic, leading to persistent tissue dam-
age and the development of various diseases.1,2 Recent research 
has shed light on the role of mitochondria, the energy-producing 
powerhouses of cells, in the chronification of inflammation. In par-
ticular, dysfunctional mitophagy and the presence of mutations in 
mitochondrial DNA (mtDNA) have emerged as key factors in this 
process.3,4

Mitochondria are known to serve essential functions in cell me-
tabolism, energy production, and signaling. They are also actively 
involved in regulating inflammation.5 When mitochondria become 
damaged or dysfunctional, a process called mitophagy is initiated. 
Mitophagy is a selective form of autophagy that removes damaged 
or dysfunctional mitochondria to preserve the homeostasis of cells; 
however, when mitophagy is impaired, dysfunctional mitochondria 
accumulate within cells. The accumulation of dysfunctional mi-
tochondria leads to the release of reactive oxygen species (ROS) 
and pro-inflammatory molecules.5 These molecules can perpetu-
ate chronic inflammation, contributing to the progression of a sig-
nificant number of inflammatory conditions. According to current 
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knowledge, mutations in mtDNA can disrupt mitochondrial function 
and impair cellular energy production. Consequently, mitochondrial 
dysfunction leads to increased oxidative stress and the development 
of inflammation.3 Apart from impairing mitochondrial function, 
mtDNA mutations can act as danger signals, activating the innate 
immune system and triggering an inflammatory response.4 Under-
standing the role of mitochondria, specifically dysfunctional mi-
tophagy and mutations in mtDNA, in the chronification of inflam-
mation is a burgeoning area of research. Accumulating evidence 
suggests that defective mitophagy, in consequence of mutations in 
mtDNA, largely contributes to the chronic nature of inflammation 
and the pathogenesis of chronic inflammatory diseases, including 
neurodegenerative, cardiovascular, metabolic, and autoimmune dis-
orders.6 Herein, we propose that dysfunctional mitophagy caused by 
mtDNA mutations has a crucial role in the chronification of inflam-
mation, since it fails to eliminate damaged mitochondria and, thus 
contributes to the persistence of the inflammatory response. The 
purpose of this review was to summarize the evidence underlining 
the role of mitochondria in inflammation chronification, with a par-
ticular focus on impaired mitophagy and mutations in mitochondrial 
DNA. The unraveling of the underlying mechanisms implicated in 
the development of chronic inflammation will help find targeted 
therapeutic approaches to restore mitochondrial health and alleviate 
chronic inflammation that can be used for the treatment of a wide 
range of chronic inflammatory conditions.

Chronic inflammation as a health and socioeconomic burden
Chronic inflammation, if left untreated or uncontrolled, can lead to 
significant morbidity and mortality in various ways. The specific 
morbidity and mortality rates associated with chronic inflamma-
tion depend on the underlying cause, duration, and severity of the 
inflammation, as well as the affected organ or system. Chronic in-
flammatory diseases are currently considered the most significant 
death cause worldwide, with more than 50% of all mortalities be-
ing attributable to the following conditions: ischemic heart disease, 
stroke, cancer, diabetes mellitus, chronic kidney disease, nonalco-
holic fatty liver disease and autoimmune and neurodegenerative 
disorders.7 Several examples of chronic inflammation-associated 
pathologies that pose significant health problems and, conse-
quently, enormous socioeconomic burdens are presented in Table 
1.8–37 Indeed, chronic inflammatory conditions listed in Table 1 are 
closely related to aging. In this regard, it is worth mentioning the 
growing popularity of the term inflammaging, which is a combina-
tion of two words, such as inflammation and aging.

Inflammaging
Inflammaging refers to a phenomenon of the persistence in the hu-
man body of chronic low-grade inflammation without the overt in-
fection, i.e., sterile inflammation, in the process of aging.38 Inflam-
mation is the body’s natural immune response to harmful stimuli 
such as infections or injuries. It is typically beneficial as an acute 
response in the short term. However, with age, the immune system 
can become dysregulated and unable to fully neutralize the inflam-
matory processes resulting from a lifelong antigenic load and ex-
posure to damaging agents. In this way, inflammaging results in 
the activation of immune mechanisms that are often distinct from 
those involved in an acute immune response, leading to tissue 
damage and degeneration. Chronic inflammation can contribute to 
the development of various age-related diseases, such as cardio-
vascular and neurodegenerative diseases, diabetes, and cancer, as 

discussed in a review by Cevenini et al.39

The etiology of inflammaging and its potential causal role in 
contributing to detrimental health outcomes remains largely unclear. 
The evidence accumulated to date suggests that a combination of ge-
netic, environmental, and lifestyle-related factors, including genetic 
predisposition, oxidative stress, changes in gut microbiota, impaired 
cellular repair mechanisms, and exposure to environmental toxins 
contributes to the development of inflammaging.38 Therefore, life-
style-related factors including regular exercise, a healthy diet, stress 
management, and adequate sleep pattern have been proposed as po-
tential approaches to mitigate inflammaging and promote healthy 
aging.40 Further research is needed to fully comprehend the complex 
molecular mechanisms underlying inflammaging and develop effec-
tive strategies that will be helpful in maintaining healthy aging and 
preventing age-related diseases.

Acute and chronic inflammation: acute-to-chronic transition
Inflammation is an evolutionarily preserved process determined 
by the activation of immune and nonimmune cells that safeguard 
the host from bacteria, viruses, toxins, and infections by eradi-
cating pathogens and supporting tissue repair and recovery.41 In 
general, the inflammatory response can be described as a time-
limited activation of inflammatory activity that occurs in the pres-
ence of a threat and ceases when it is eliminated. The cellular 
basis and pathophysiology of an acute inflammatory response 
have been long-established.42,43 In response to tissue damage or 
infection, the blood vessels in the affected area dilate, allowing 
increased blood flow to that area. This is called vasodilation and 
is mediated by the release of inflammatory mediators such as his-
tamine and prostaglandins that cause the relaxation and dilatation 
of blood vessels. Besides, the blood vessels in the affected area 
become more permeable, allowing fluids, proteins, and immune 
cells to leak out into the underlying tissue. The further discharge 
of inflammatory mediators such as histamine and bradykinin 
mediate the increased vascular permeability. Immune cells such 
as neutrophils and macrophages are recruited to the site of in-
flammation from the bloodstream. They migrate toward the af-
fected tissue governed by chemokine signaling. These immune 
cells play a crucial role in the clearance of pathogens and debris. 
Neutrophils and macrophages engulf and destroy pathogens and 
debris through a process called phagocytosis. They recognize 
and bind to pathogens or cellular debris, engulf them, and then 
destroy them with enzymes and toxic molecules. Both immune 
cells and damaged tissue release inflammatory mediators, such as 
cytokines, chemokines, and prostaglandins, which help to amplify 
and propagate the inflammatory response. These mediators can 
further recruit immune cells, increase vascular permeability, and 
activate other cellular responses. Once the inflammatory response 
has cleared the pathogens and debris, tissue repair mechanisms 
are initiated. In addition, macrophages, play a role in clearing de-
bris and promoting tissue healing through the release of growth 
factors and other signaling molecules.

Acute inflammation is typically initiated by a specific cause, 
such as an infection, injury, or tissue damage. If the underlying 
cause persists or is not effectively eliminated, acute inflammation 
may continue and eventually result in chronic inflammation. For 
example, a persistent infection that is not effectively cleared by 
the immune system can lead to chronic inflammation.44 Shifts in 
the inflammatory response from short-term to long-term can lead 
to the breakdown of immune tolerance and widespread changes in 
all tissues and organs, as well as normal cellular physiology, which 
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can increase the risk of developing many noncommunicable dis-
eases both in young and older people.45 Dysregulated inflamma-
tory response and chronic inflammation have been associated with 
the development and progression of various chronic pathologies, 
such as atherosclerosis, types 1 and 2 diabetes mellitus, metabolic 
syndrome, inflammatory bowel disease (IBD), and neurodegen-
erative diseases.46,47 These conditions are characterized by the de-
velopment of long-standing (sterile) inflammation continuing for 
an extended period.48 The immune system mistakenly initiates an 
inflammatory response, even without a causative factor or after the 
initial cause of inflammation has been eliminated, resulting in the 
sustained secretion of cytokines. Chronic inflammation can also 
impair the function of the immune system, leading to increased 
susceptibility to infections and tumors and a poor response to vac-
cines.49 In addition, chronic inflammation during pregnancy and 
childhood can have severe developmental implications that in-
clude increasing the risk of chronic inflammatory conditions over 
the life span.50

There are certain social, psychological, environmental, and 
biological factors that hinder the resolution of acute inflammation 
and, consecutively, promote a state of low-grade, noninfective sys-
temic chronic inflammation.51 Thus, prolonged exposure to pol-
luted air is related to chronic inflammation.52 There are lifestyle-
related factors, such as poor diet, sedentary lifestyle, continuous 
emotional stress, and insufficient sleep, that can contribute to the 
development of chronic inflammation.53 Some individuals may 
have a genetic predisposition to the development of chronic in-
flammation,9 which can be associated with their immune response, 
inflammation-regulating genes, or other genetic factors. These ge-
netic factors can negatively influence the duration and intensity of 
inflammation, potentially preceding the development of chronic 
inflammation.

In summary, acute inflammation and chronic inflammation are 
two different types of inflammation that occur in the body, and they 
differ in duration, underlying causes, and features.54 Acute inflam-
mation is a short-term, rapid, and self-limited response of the hu-
man body to an injury, infection, or other harmful stimuli. It helps 
to recruit immune cells to the site of injury or infection, remove 
damaged tissue, and promote tissue repair. Chronic inflammation 
is a long-term, persistent inflammatory response that can last for 
weeks, months, or even years. If acute inflammation is character-
ized by classic signs of inflammation, including redness, swelling, 
heat, pain, and loss of function at the site of injury or infection, 
chronic inflammation may not necessarily exhibit the same signs 
and symptoms as acute inflammation.55 Chronic inflammation, if 
left untreated, can have detrimental effects on tissues and organs 
over time. It can cause tissue damage, scarring, and dysfunction, 
and contribute to the pathogenesis of chronic diseases. The process 
of inflammation chronification is complex and involves dysregula-
tion of the immune response and failure of the normal resolution 
mechanisms (described in the next section). Therefore, it is im-
portant to manage chronic inflammation appropriately to prevent 
its potential adverse health effects. Measures to prevent the devel-
opment of chronic inflammation typically involve identifying and 
addressing the underlying causes, i.e., treating infections, manag-
ing autoimmune conditions, reducing exposure to environmental 
toxins, and adopting a healthy lifestyle.

Pathomechanisms of inflammation chronification
The key pathomechanisms contributing to the chronification of in-
flammation include the dysregulation of the immune response, the 

failure of inflammation resolution mechanisms, and the presence 
of altering DNA structure epigenetic changes.

Dysregulation of immune signaling pathways
In chronic inflammation, a continuous immune response is often 
not properly regulated or controlled.56,57 In this way, immune cells, 
such as macrophages, neutrophils, and lymphocytes, can continue 
to release inflammatory mediators such as cytokines, chemokines, 
and ROS, facilitating the prolongation of the inflammatory re-
sponse. Numerous attempts have been made to identify the causes 
of the dysregulation of immune signaling pathways to prevent the 
development of chronic inflammation and chronic inflammatory 
diseases. Dysregulation of immune signaling pathways, particular-
ly the nuclear factor-kappa B (NF-κB) and a predicted nucleoside-
triphosphatase, a carboxy-terminal leucine-rich repeat, and an ami-
no-terminal pyrin domain domains-containing protein 3 (NLRP3) 
inflammasome signaling, can be affected by one or a combination 
of factors and, thus, contribute to chronic inflammation develop-
ment. Controlled activation of NF-κB signaling is essential for reg-
ular innate and adaptive immune responses, while dysregulation of 
NF-κB signaling in lymphocytes contributes to the development of 
conditions extending from chronic inflammation and autoimmun-
ity to lymphoma.58 The transcription factor NF-κB is a chief regu-
lator of lymphocyte survival and activation and NLRP3 inflamma-
some is the innate immune system receptor.58,59 Interestingly, in 
autoimmune conditions, the immune system erroneously attacks 
the body’s own tissues, leading to chronic inflammation. There is 
a piece of evidence demonstrating that the chronic inflammation 
seen in people with abdominal aortic aneurysms is a consequence 
of an impaired autoimmune response to autologous components of 
the aortic wall.60 Other autoimmune conditions, characterized by 
the aberrant activity of the immune system, including rheumatoid 
arthritis, systemic lupus erythematosus (SLE), and IBD among 
others, are also accompanied by chronic inflammation.61

Genetic mutations or alterations in the genes that encode pro-
teins involved in immune signaling pathways can lead to dysregu-
lation of the immune response. For example, mutations in genes 
encoding components of the NF-κB pathway or NLRP3 inflam-
masome can disrupt their normal function, leading to aberrant im-
mune signaling.62,63 Besides, aging can unfavorably affect immune 
signaling pathways, leading to their dysregulation. Alterations in 
both NF-κB and NLRP3 inflammasome signaling have been im-
plicated in age-related immune dysfunction and the development 
of low-grade inflammation.64,65 Moreover, certain RNA viruses 
(influenza A virus) can activate the NLRP3 inflammasome path-
way owing to mitochondrial antiviral signaling protein on the outer 
mitochondrial membrane and, thus, cause the dysregulation of the 
immune response.66 Immune signaling pathways are tightly regu-
lated by feedback mechanisms to prevent excessive inflammation. 
Dysfunctional feedback loops can be accountable for dysregulated 
immune signaling. For example, impaired negative feedback of 
NF-κB signaling can result in its prolonged activation and chronic 
inflammation, as reviewed by Singh.67 The evidence indicating 
that post translational modifications, such as phosphorylation, 
ubiquitination, and acetylation, play critical roles in regulating im-
mune signaling pathways was reviewed.68,69 For example, aberrant 
phosphorylation of NF-κB or NLRP3 inflammasome components 
can lead to their dysregulated signaling.70 The impact of other 
factors, such as metabolic imbalance, hormonal changes, and gut 
microbiota dysbiosis, on NF-κB and NLRP3 inflammasome im-
mune signaling has been extensively reviewed.71–73 Environmen-
tal factors can also disrupt immune signaling pathways. Heavy 
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metal pollution can induce neurotoxicity, inflammation, and tau 
hyperphosphorylation leading to neurodegenerative disease. For 
example, manganese exposure can induce the GMP-AMP syn-
thase (cGAS)-stimulator of interferon genes (STING) pathway, a 
key mediator of inflammation, responsible for the powerful innate 
immune defense programs.74 Both cGAS and STING are broadly 
expressed in mammalian cells, acting as major regulators of type I 
interferon and cytokine expression.75

Dysregulated immune signaling pathways may be associated 
with the development of an autoimmune reaction. The way how 
oxidized mtDNA, an autoimmune disease biomarker, induces 
short- and long-term immune activation leading to prolonged in-
flammatory and autoimmune responses was discussed in a recent 
review.76 Fragmented oxidized mtDNA enters the cytosol where 
it activates NLRP3 inflammasome and generates the production 
of interleukin (IL)-1β, IL18, and cGAS-STING, inducing type I 
interferons and interferon-stimulated genes. Besides, dysfunction-
al immune responses in an autoimmune disorder, such as type 1 
diabetes mellitus, can involve aberrant activation of NF-κB and 
NLRP3 inflammasome signaling by mtDNA.77,78

Failure of inflammation resolution mechanisms
Inflammation resolution is a dynamic and regulated process that 
follows acute inflammation and involves the removal of inflamma-
tory mediators, tissue repair and functional restoration, facilitating 
the recovery of homeostasis.79 In chronic inflammation, the resolu-
tion mechanisms may fail, leading to persistent inflammation.80

As mentioned above, if the initial trigger of inflammation, such 
as an infection, persists or is not effectively cleared, it can hin-
der the resolution of inflammation. Chronic infections or persis-
tent presence of pathogens, repeated, and persistent infection with 
Chlamydia, for example, can sustain immune response and prevent 
inflammation from resolving.44 Dysfunctional immune cells that 
are unable to properly carry out their functions can impair the reso-
lution process.81 Immune cells, such as macrophages, neutrophils, 
and regulatory T cells, play critical roles in inflammation resolu-
tion caused by infectious pathogens. For instance, macrophages 
that are unable to switch from a pro-inflammatory to an anti-in-
flammatory phenotype may contribute to unresolved inflamma-
tion.82 However, the effect of some lifelong infections caused by 
cytomegalovirus, Epstein-Barr virus, hepatitis C virus, and other 
pathogens on chronic inflammation remains controversial.83

The resolution of inflammation requires a delicate balance be-
tween pro-inflammatory and anti-inflammatory mediators. In the 
presence of an imbalance with sustained production of pro-inflam-
matory mediators or insufficient production of anti-inflammatory 
mediators, inflammation resolution can be impaired. For exam-
ple, deficiencies in specialized proresolving lipid mediators such 
as resolvins and lipoxins can prevent inflammation resolution.84 
The clearance of dead cells, debris, and immune cell infiltrates 
is critical for inflammation resolution.85 Dysfunctional clearance 
mechanisms such as impaired phagocytosis or reduced efferocy-
tosis (clearance of apoptotic cells) can lead to the accumulation 
of inflammatory infiltrates and hinder inflammation resolution.86 
Moreover, hampered removal of cells undergoing apoptosis may 
lead to the initiation of the development of systemic autoimmun-
ity, the hallmark of SLE.87 Deficiencies in complement compo-
nent C1q, a protein complex that plays a prominent recognition 
role in adaptive and innate immunity, primarily contribute to the 
insufficient clearance of apoptotic cells. Deficiency of C1q affect-
ing the clearance of dying cells can lead to the development of 
systemic autoimmunity, as in SLE.88 Notably, C1q deficiency is 

a rare defect in the classical pathway of the complement system 
with autosomal-recessive inheritance pattern that caused by muta-
tions occurring in either of the following C1q genes: C1qA, C1qB, 
and C1qC.89 As most SLE patients do not have hereditary C1q 
deficiency, there is indirect evidence for the significance of C1q in 
the disease inflammatory processes such as hypocomplementemia 
developed as a result of activation via the classical pathway, C1q 
accumulation in tissues affected, and the occurrence of anti-C1q 
autoantibodies. C1q plays a crucial role in the recognition of vari-
ous damaging molecules, ranging from pathogen-associated mo-
lecular ligands to damage-associated molecular targets.90 In this 
way, C1q serves as a molecular bridge between the phagocytic cell 
and the apoptotic debris that needs to be removed. Utilizing a C1q-
deficient mouse model of SLE, it was shown that C1q improves 
the response to self-antigens by amending the mitochondrial me-
tabolism of effector CD8+ (cytotoxic) T lymphocytes.91 In addi-
tion, opsonization, which facilitates the appropriate clearance of 
cellular fragments plays a significant role in SLE pathogenesis. 
Under physiological conditions, the identification of dead cells is 
maintained by opsonins, C1q including. Both a failure in the ef-
ficient and immunologically silent opsonization of fragments of 
dead cells and the aberrant immunogenic opsonization by autoan-
tibodies of secondary necrotic cell-originated materials support the 
development of autoimmune response during SLE and promote 
chronic inflammation.92 Besides, a joint action of C1q and DNase 
I augments the clearance of necrotic chromatin.93

Oxidative stress, characterized by an imbalance between ROS 
production and antioxidant defenses, can impair the resolution of 
inflammation and, thus, contribute to the development of chronic 
inflammation.94 Persistent oxidative stress can cause damage to 
the biological macromolecules and tissues and impact the resolu-
tion process by perpetuating inflammation.95

Low-grade inflammation intertwines with metabolic disequi-
librium. Patients with schizophrenia have a pronounced metabolic 
inflammatory imbalance, as evidenced by the presence of increased 
pro-inflammatory activity and obesity with changes in the metab-
olism of carbohydrates, lipids, and their metabolites.96 This study 
showed that adipose tissue accumulation during the disease progres-
sion and treatment with antipsychotics affects a number of key ho-
meostatic factors by disrupting the mechanisms responsible for lipid 
and carbohydrate metabolism and leading to undesirable changes 
in cytokine and adipokine profiles. The involvement of cytokines 
and inflammasomes in the process of development of metabolical-
ly associated fatty liver disease, which exhibits a robust immune-
inflammatory dimension, was demonstrated.97 The innate immune 
system components such as inflammasomes and cytokines are the 
sources of sterile inflammation in the liver in obesity and metabolic 
syndrome. The close relationship between innate immune signaling 
in metabolically associated fatty liver disease was described.98

Aging can affect inflammation resolution, with altered function of 
immune cells, impaired tissue repair mechanisms, and dysregulated 
signaling pathways. Age-related changes, including cellular senes-
cence, sarcopenia, and obesity, can contribute to the failure of inflam-
mation resolution, as recently reviewed by Livshits et al.99 Addition-
ally, chronic inflammation can result in tissue damage, which triggers 
ongoing tissue repair processes.100 These repair processes involving 
the recruitment of immune cells, production of growth factors, and 
formation of new blood vessels, can perpetuate the inflammatory re-
sponse, and contribute to the chronification of inflammation.

Epigenetic changes contributing to prolonged inflammation
Epigenetic changes are heritable modifications that affect gene 
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expression; however, unlike DNA mutations, they do not involve 
changes in the underlying DNA sequence. The main epigenetic 
mechanisms include DNA methylation, chromatin modifications, 
histone modifications, and loss of imprinting and noncoding RNA. 
These epigenetic changes can be considered potential molecu-
lar causes of chronic inflammation and, hence, implicated in the 
pathogenesis of many inflammatory disorders. Dysregulated epi-
genetic modifications can result in altered expression of pro- and 
anti-inflammatory genes, leading to impaired inflammation resolu-
tion and dysregulation of immune responses.101

DNA methylation is a common epigenetic modification where 
methyl groups are added to cytosine residues in DNA, resulting 
in gene silencing.102 Hypermethylation of pro-inflammatory genes 
can lead to their persistent silencing, reducing the production of 
anti-inflammatory proteins and contributing to prolonged inflam-
mation.103 DNA methylation can impact the inflammation resolu-
tion.104 These epigenetic changes can also affect immune signaling 
pathways, leading to dysregulation of immune responses.105

Histones are proteins that govern DNA packaging into a compact 
structure called chromatin. Modifications to histones, such as acety-
lation, methylation, and phosphorylation, can alter the accessibility 
of genes for transcription. Persistent inflammation can lead to aber-
rant histone modifications, resulting in a sustained pro-inflamma-
tory gene expression pattern.106 Histone modifications can have an 
impact on the inflammation resolution process104 and immune sign-
aling pathways, resulting in dysregulation of immune responses.105

Noncoding RNAs, such as microRNAs and long noncoding 
RNAs, are involved in the regulation of gene expression. Ac-
cording to the current understanding, they can act as fine-tuners 
of inflammatory responses by either promoting or inhibiting the 
expression of pro-inflammatory or anti-inflammatory genes. Dys-
regulation of noncoding RNA functions caused by epigenetic 
changes can disrupt the balance of inflammatory gene expression 
and contribute to prolonged inflammation.107

Chromatin remodeling refers to changes in the structure of chro-
matin that affect gene accessibility. Adenosine triphosphate (ATP)-
dependent chromatin remodeling complexes can be influenced by 
epigenetic modifications and can lead to prolonged inflammation 
by controlling the accessibility of pro-inflammatory genes.108 
Overall, epigenetic changes can play a role in the chronification of 
inflammation by altering the expression of pro-inflammatory and 
anti-inflammatory genes and disrupting the balance of immune re-
sponses. However, the field of epigenetics is still an active area 
of research, further studies are needed to fully understand the re-
lationship between epigenetic changes and chronic inflammation.

Mitochondria and chronification of inflammation
The role of mitochondria in the chronification of inflammation is 
a rapidly evolving area of research that aims to elucidate the un-
derlying mechanisms. Our recent review has suggested that mito-
chondria, which are known as the powerhouses of the cell, owing 
to their role in producing energy, may also play a crucial role in the 
chronification of inflammation.82 Moreover, the evidence indicat-
ing the contributing role of mitochondria to the chronification of 
inflammation was also discussed previously.4,109

Dysfunctional mitochondria can contribute to chronic inflam-
mation by several pathways, including oxidative stress, immune 
dysregulation, and metabolic changes. One key mechanism is the 
production of ROS during mitochondrial respiration, which can 
lead to oxidative stress and damage to cellular components, such as 
proteins, lipids, and DNA.110 Oxidative stress can elicit inflamma-

tion by activating immune cells and promoting the release of pro-
inflammatory cytokines.111 Mitochondrial dysfunction can also 
impair cellular energy production, leading to metabolic changes 
that can affect immune cell function and promote chronic inflam-
mation. Reduced energy production by mitochondria can impair 
the ability of immune cells to clear infections, leading to persistent 
inflammation.112 Additionally, mitochondria are involved in the 
regulation of immune responses through mitophagy, particularly 
autophagy, the regulated and selective process of removing excess 
or dysfunctional mitochondria through lysosomal fusion, thereby 
controlling the quantity and quality of mitochondria in the cell. 
Mitochondrial quality control system that responds to a wide range 
of stress stimuli to regulate mitochondrial fission, fusion, biogen-
esis, and mitophagy, have been discussed in several reviews.113,114 
In particular, the regulatory mechanisms of mitochondrial au-
tophagy during the pathogenesis of chronic inflammation-associ-
ated cardiomyopathy have been described.115,116 The reviews sum-
marized the evidence demonstrating that in hypoxia conditions, 
mitochondrial autophagy regulated by FUN14 domain-containing 
1 (FUNDC1), 465-amino acid residue E3 ubiquitin ligase (PAR-
KIN), BCL-2/adenovirus E1B 19 kDa protein-interacting protein 
3 (BNIP3), and BH3-only family signaling protein (NIX) is in-
creased, leading to peroxisome proliferator-activated receptor al-
pha (PGC1α)- and nuclear respiratory factors 1/2 (Nrf1/2)-medi-
ated decrease in biogenesis of mitochondria (Fig. 1). In this way, 
homeostasis of mitochondria necessary for the activity of cardiac 
cells is achieved.

Dysfunctional mitochondria that are not eliminated by mi-
tophagy can release mtDNA into the cytoplasm and that can ac-
tivate immune cells and trigger inflammation, as reviewed.117,118 
Indeed, dysfunctional mitochondria can contribute to chronic in-
flammation to a large extent. Therefore, targeting mitochondrial 
dysfunction may become a potential therapeutic strategy for the 
treatment of chronic inflammatory conditions. Further compre-
hensive studies are required to understand the underlying mecha-
nisms.

Defective mitophagy and inflammatory response
Defective mitophagy can impact the inflammatory response and 
contribute to the development of inflammatory disease. In fact, 
defective mitophagy enhances and prolongs the inflammatory 
response and, thus, may be responsible for the chronification of 
inflammation.6,82,119 Improper mitophagy can lead to the accumu-
lation of dysfunctional mitochondria, which release mtDNA and 
mitochondrial reactive oxygen species (mtROS) into the cyto-
sol.120 These molecules can activate intracellular signaling path-
ways that promote the production of inflammatory cytokines, such 
as IL1β, IL6, and tumor necrosis factor-alpha, and contribute to 
the development of chronic inflammation. Respective studies have 
demonstrated that failed mitophagy can lead to the accumulation 
of damaged proteins and lipids, which can initiate the activation of 
the NLRP3 inflammasome, a multiprotein complex that promotes 
the production of pro-inflammatory cytokines and the develop-
ment of inflammatory disease.121,122 Other studies in animal mod-
els showed that promoting mitophagy reduced inflammation and 
prevented the development of inflammatory disease. In a mouse 
model of atherosclerosis, enhancing mitophagy reduced the accu-
mulation of inflammatory cells in the arterial wall and prevented 
the development of atherosclerosis, the chronic inflammatory con-
dition.123,124

Several studies demonstrated that enhancing mitophagy using 
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Fig. 1. Schematic representation of the regulation of mitochondrial autophagy during the pathogenesis of chronic inflammation-associated cardiomyopathy. 
Under hypoxic conditions, the equilibrium between Drp1-, FIS1-, and Mff-facilitated mitochondrial fission and OPA1-, Mfn1-, and Mfn2-facilitated mitochondrial 
fusion is broken. Such disbalance leads to mitochondrial fragmentation and structurally impaired mitochondria. Damaged (fragmented) and dysfunctional 
mitochondria are undergoing a loss of mitochondrial membrane potential. Mitochondria with low membrane potentials engage FUNDC1 that can phosphoryl-
ate/dephosphorylate different proteins, causing an increased expression of an autophagosome marker LC3 and the formation of mitochondrial autophagic 
lysosomes. Also, phosphatase and PINK1 are translocated to mitochondria, where they activate PARKIN, which ubiquitinates proteins in the outer membrane 
of mitochondria. The ubiquitinated mitochondria interact with LC3 on the surface of lysosomes forming autophagosomes. Additionally, BNIP3 and NIX encom-
passing LC3 interaction motifs directly bind LC3, consequently promoting the formation of autophagic lysosomes. In the later stages of mitophagy, biogenesis of 
mitochondria occurs. The principal regulatory agent PGC1α, promotes transcription of Tfam by inducing the activity of Nrf-1/2. BNIP3, BCL-2/adenovirus E1B 19 
kDa protein-interacting protein 3; Drp1, dynamin-1-like protein; FIS1, mitochondrial fission 1 protein; FUNDC1, FUN14 domain-containing 1; LC3, an autophago-
some marker; MMP, mitochondrial membrane potential; Mff, mitochondrial fission factor; NIX, BH3-only family signaling protein; Mfn1/2, mitofusin-1/2; Nrf 
1/2, nuclear respiratory factors 1/2; OPA1, dynamin-like 120 kDa protein; PARKIN, 465-amino acid residue E3 ubiquitin ligase; PGC1α, peroxisome proliferator-
activated receptor alpha; PINK1, tensin homolog-induced putative kinase 1; Tfam, mitochondrial transcription factor A.
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pharmacological or genetic approaches can reduce inflammation 
and improve outcomes in different inflammatory disease models, 
including diabetes, neurodegenerative diseases, and atheroscle-
rosis. Thus, including mitophagy, rapamycin can reduce inflam-
mation and prevent the development of Parkinson’s disease in in 
vitro model cells.125 Similarly, enhancing mitophagy, urolithin A 
has been shown to reduce inflammation and improve insulin sen-
sitivity in obese mice.126 Also, enhancing mitophagy can reduce 
inflammation and improve outcomes in atherosclerosis. In a mouse 
model of atherosclerosis, enhanced mitophagy reduced the accu-
mulation of inflammatory cells in the arterial wall and prevented 
the development of atherosclerosis.127 In addition, physical exer-
cise, by enhancing the targeting of mitochondria for mitophagy 
and increasing autophagy and mitophagy flux, reduced inflamma-
tion in murine animal models.128 The schematic representation of 
the direct link between defective mitophagy and the development 
of chronic inflammation is presented in Figure 2.

Defective mitophagy can lead to the accumulation of dam-
aged/dysfunctional mitochondria, which can produce excessive 
mtROS and release mtDNA into the cytoplasm. Mitochondrial 
ROS and mtDNA can activate the NF-κB signaling pathway, 
which can increase the transcription of pro-inflammatory cy-

tokines, such as IL6 and tumor necrosis factor-alpha. A release 
of mtROS and mtDNA can contribute to the activation of the 
NLRP3 inflammasome, leading to the production and secretion 
of pro-inflammatory cytokine IL1β. When ROS are produced by 
dysfunctional mitochondria, they can activate the NLRP3 inflam-
masome by inducing the production of ROS-sensitive proteins. 
These proteins can interact with the inflammasome and promote 
its activation. Similarly, mtDNA can also induce the NLRP3 in-
flammasome by serving as a damage-associated molecular pat-
tern. These processes are believed to play central roles in the de-
velopment and progression of chronic inflammatory diseases, for 
example, atherosclerosis.127

Overall, accumulated evidence suggests that defects in mi-
tophagy can disrupt the inflammatory response and aid in the 
development of chronic inflammation, the key feature of many 
inflammatory diseases. Moreover, the increase in mitophagy 
can reduce inflammation, as shown in experimental models of 
inflammatory diseases. When mitophagy is enhanced, dysfunc-
tional mitochondria are efficiently removed, which reduces the 
secretion of pro-inflammatory molecules and attenuates the in-
flammatory response. Mitophagy modulation may, therefore, 
have therapeutic potential for the treatment of inflammatory dis-

Fig. 2. Interplay between defective mitophagy and chronic inflammation. IL, interleukin; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxy-
gen species; NF-κB, nuclear factor-kappa B; NLRP3, NACHT, LRR, and PYD domains-containing protein 3; TNF-α, tumor necrosis factor-alpha.
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eases. It is important to note that the modulation of mitophagy 
can be challenging, therefore, the enhancing mitophagy optimal 
strategies that would help to achieve therapeutic benefits have to 
be identified.

Future directions
To obtain rigorous evidence confirming that defective mitophagy 
is responsible for the disruption of the inflammatory response, 
the following research can be carried out: (1) Gene-editing ex-
periments using clustered regularly interspaced short palindro-
mic repeats (CRISPR-Cas9) technology that can modify, delete, 
or correct precise regions in mitophagy-related genes. This ap-
proach will allow testing of the effects of altered mitophagy on 
the inflammatory response. For this, animal models of inflam-
mation can be used; (2) Further animal studies using mitophagy-
modulating pharmacological agents, such as rapamycin and 
urolithin A, to test whether these drugs can reduce inflamma-
tion in animal models of inflammation; (3) Translational experi-
ments using human tissue samples obtained from patients with 
inflammatory diseases that would help to determine whether the 
association between mitophagy and inflammation observed in 
animal models extends to humans; (4) in vitro studies using cell 
lines derived from patients with inflammatory diseases to test the 
after-effects of mitophagy modulation on the production of pro-
inflammatory cytokines.

Defective mitophagy and mtDNA mutations
Mitochondria have their own independent genome known as mtD-
NA. Mitochondrial DNA encodes essential proteins involved in 
oxidative phosphorylation, the process through which mitochon-
dria generate chemical energy, which is accumulated in ATP mol-
ecules. One unique feature of mtDNA is maternal inheritance. It 
is inherited only from the mother, i.e., passed down from mother 
to offspring. This means that mtDNA mutations, which can be 
random or arise due to genetic predisposition or the influence of 
environmental factors, can be transmitted from generation to gen-
eration. Unlike nuclear DNA, mtDNA is more susceptible to mu-
tations and damage because of (1) its vicinity to the site of ROS 
production; (2) the lack of protective histone proteins, and (3) the 
failure of the complex DNA repair system.129

Mitochondrial DNA mutations can be homoplasmic, where 
both mutated and wild-type mtDNA are present in the cell or 
heteroplasmic, where only mutated species are present in the cell. 
Studies of mtDNA obtained from patients with atherosclerosis 
showed the presence of mtDNA mutations with different levels 
of heteroplasmy in atherosclerotic lesions.130 Mutations were 
found in the mitochondrial genes encoding rRNA12S, tRNA-Leu 
(UUR recognition codon), tRNA-Leu (CUN recognition codon), 
subunits of 1, 2, 5, and 6 NADH-dehydrogenase, and cytochrome 
B.131–133 It was also found that, in atherosclerosis, homoplasmic 
mutations of mtDNA, such as A1811G and G9477A, and hetero-
plasmic mutations, such as G14459A, A1555G, and G12315A, 
are linked to the pro-inflammatory activation of circulating hu-
man monocytes.134 This study proposed that in atherosclerosis 
certain mtDNA mutations can alter monocyte macrophage acti-
vation via mitochondrial dysfunction. Also, 4977 bp deletion in 
mtDNA was detected in blood cells and atherosclerotic lesions 
of patients with coronary artery disease, which links this mtDNA 
damage with mitochondrial dysfunction.135,136 However, whether 
the degree of damage observed in atherosclerosis is sufficient for 

the manifestation of mitochondrial dysfunction remains unclear. 
The continuing loss of mitochondrial function occurs with aging 
or it can be accelerated by the oxidative stress caused by modified 
low-density lipoproteins during the process of atherogenesis.137 
Furthermore, a large amount of evidence indicating that mtD-
NA mutations can impair the normal function of mitochondria, 
leading to mitochondrial dysfunction that, in turn, can disrupt 
mitophagy, has been reviewed.138,139 Mitochondrial DNA muta-
tions can be responsible for defects in mitochondrial respiratory 
chain complexes, leading to reduced ATP production, increased 
production of ROS, and altered mitochondrial membrane poten-
tial. A study using cybrid cell lines with some point mutations 
in mtDNA suggested that aging-related mtDNA mutations can 
lead to mitochondrial dysfunction by altering the oxidative phos-
phorylation mechanism.140 Supporting the action of ATP syn-
thase, variants of mtDNA, such as m.3256C>T, m.12315G>A, 
and m.13513G>A, were also identified.127 Mitochondrial DNA 
mutations have key roles in pathological processes, affecting the 
genes encoding components of mitochondrial electron transport 
chains or mitochondrial tRNA genes. Thus, numerous mtDNA 
variants associated with inflammation and mitochondrial dys-
function have been identified.127 Our experiments showed a 
direct relationship between the presence of mtDNA variants, 
such as del562G, m.3256C>T, m.12315G>A, m.13513G>A, 
and m.14459G>A, and an increased proton leakage and oxygen 
consumption, resulting in the excessive generation of ROS and 
the development of mitochondrial dysfunction, under the con-
ditions of uncoupling of oxidative phosphorylation in vitro.127 
The level of the pro-inflammatory response was assessed by the 
expression of the pro-inflammatory cytokine IL1β gene using 
reverse transcriptase polymerase chain reaction. On day 1, the 
addition of lipopolysaccharide was accompanied by upregulation 
of the IL1β gene, indicating the occurrence of an inflammatory 
response both in control cells and in the presence of mitophagy 
inhibitors. On day six, repeated addition of lipopolysaccharide 
resulted in a lower pro-inflammatory response in control cells, 
indicating the presence of immune tolerance. Upon mitophagy 
inhibition, a continuous inflammatory response was perceived in 
cells, whereas immune tolerance was not observed. These experi-
ments emphasize the important role of mtDNA mutations in the 
development of the innate immune response and the manifesta-
tion of chronic inflammation. In addition, a study showed that 
altered aminoacylation of tRNAHis caused by the m.12201T>C 
mutation may lead to mitochondrial translational defects and 
respiratory deficiency.141 Disrupted tRNA metabolism is ac-
countable for the failure of mitochondrial protein synthesis and 
oxidative phosphorylation, an increased ROS production, and a 
marked decrease in membrane potential.142

Impaired mitophagy due to mitochondrial dysfunction leads 
to a buildup of damaged mitochondria within cells.143 Defective 
mitophagy due to mtDNA mutations can disrupt cellular energy 
metabolism and homeostasis, leading to cellular stress and dys-
function. In this way, defective mitophagy caused by mtDNA 
mutations may contribute to the development of chronic diseases, 
including cancers, neurodegenerative diseases, and metabolic dis-
orders.144–146 Therefore, it is important to understand the relation-
ship between mutations in mtDNA, mitochondrial dysfunction, 
and mitophagy defects. Mitochondrial DNA mutations were found 
to be associated with atherosclerosis.119 A direct relationship be-
tween the presence of some mtDNA mutations and defective mi-
tophagy was also established in chronic inflammation-associated 
atherosclerotic disease.147 Therefore, it is possible to suggest that 
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mitochondrial mutations can be the cause of defective mitophagy 
(Fig. 3), which, in turn, can disrupt the immune response, leading 
to the development of local chronic inflammation and the forma-
tion of an atherosclerotic lesion in the arterial wall, as observed in 
atherosclerosis.

The schematic representation of the development of chronic 
inflammation during atherogenesis and atherosclerotic lesion 
formation in the arterial wall, which is associated with defective 
mitophagy due to mtDNA mutations, is shown in Figure 4. The 
hypothesis about the possible role of mitochondrial mutations in 
the occurrence of defective mitophagy stimulated research us-
ing the mitochondrial genome editing approach.148 In particular, 
the causal role of the G15059A mutation in the mitochondrially 
encoded cytochrome B gene was established by using CRISPR/
Cas9 technique.148 The mitoCAS9 vector and two single guide 
RNAs to the G15059A mutation were used to eliminate the mu-
tation from cybrid cytoplasmic Thp1Cybrid-High Sum Mutation 
Antiatherogenic Mutation 1(TC-HSMAM1) macrophage-like 
cells (Fig. 5). As a result, initially defective mitophagy in intact 
TC-HSMAM1 macrophage-like cells was restored to its normal 
activity. In these cells, the mitophagy was dysfunctional under 
the same conditions. Thus, the G15059A mutation causes the 
disruption of cellular mitophagy processes, preserving dysfunc-
tional mitochondria in cells.

Conclusion
It is clear that mitochondria, apart from playing a crucial role in a 
variety of cellular processes, such as energy production, metabo-
lism, and cell signaling, are also involved in regulating inflamma-

tion, a complex immune response to tissue injury or infection. In-
dependent research groups have established a connection between 
dysfunctional mitochondria and the chronification of inflamma-
tion. In particular, mitophagy defects caused by mtDNA mutations 
have been found to be associated with disrupted immune response. 
Dysfunctional mitophagy can lead to the accumulation of damaged 
mitochondria within cells, resulting in the production of ROS and 
the release of pro-inflammatory molecules. These molecules can 
cause and sustain a lengthy stimulation of the inflammatory re-
sponse, leading to the chronification of inflammation. The chroni-
fication of inflammation associated with dysfunctional mitophagy 
and mtDNA mutations can contribute to the pathogenesis of many 
inflammatory diseases, such as neurodegenerative disorders, car-
diovascular diseases, and metabolic and autoimmune disorders. In 
recent years, the mechanisms that prevent the clearance of dys-
functional mitochondria and determine the development of chronic 
inflammation have become the subject of important biomedical re-
search as one of the main medical problems. Understanding these 
processes may provide insights into developing therapeutic strate-
gies to restore mitochondrial health and mitigate chronic inflam-
mation.
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Fig. 4. Proposed mechanisms of chronic inflammation development in the arterial wall during atherogenesis and atherosclerotic lesion formation, which 
is associated with defective mitophagy due to mtDNA mutations. (a) Accumulation of circulating immune cells and LDL is taking place predominantly in 
areas with a great number of giant multinucleated endothelial cells. (b) Pro-inflammatory signaling initiated in response to pro-inflammatory stimuli or 
uptake of modified LDL can become persistent due to defective mitophagy. (c) Chronification of inflammation and (d) Inflammation resolution in the arterial 
wall can lead either to persistent inflammation or diffuse thickening and atherosclerotic plaque formation. DAMPs, damage-associated molecular patterns; 
LDL, low-density lipoprotein; PAMPs, pathogen-associated molecular patterns.

Fig. 5. Schematic representation of functional recovery of defective mitophagy caused by the presence of the G15059A mutation in mtDNA in cybrid 
TC-HSMAM1 macrophage-like cells, elucidated by using the mitochondrial genome editing approach, the CRISPR/Cas9 technique. CRISPR-Cas9, clus-
tered regularly interspaced short palindromic repeats; mtDNA, mitochondrial DNA; MTS, mitochondrial targeting sequence; sgRNA, single guide RNA; TC-
HSMAM1, Thp1 Cybrid-High Sum Mutation Antiatherogenic Mutation 1.
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